COURSE INFORMATION

Course Code	BMUH 531	Course Name	Advanced Electromagnetism and Waves					
Type of Course	Level of Course	Semester	Language	Theory	Application (Practice)	Laboratory	Local Credits	ECTS
Elective	Graduate	Fall & Spring	English	3	0	0	3	6

Department	: Electrical and Computer Engineering
Prerequisites/Requirements	
for Admission	•
Mode of delivery	: Face to Face
Course coordinator	: Dr. Mehmet Ali Olpak
Course lecturer(s)	
Course assistant(s)	
Course description/aim	: Students are expected to understand electromagnetic phenomena in terms of boundary value problems, and to learn how to obtain time-harmonic solutions of Maxwell's equations for various systems
Course contents	: Boundary value problems in electromagnetic theory, Electromagnetic induction, Maxwell's equations, Wave equations and plane wave solutions, waves in lossless and lossy media, reflection and refraction, electromagnetic waves in transmission lines, waveguides and cavities, antennas and antenna arrays
Recommended optional program components	: None
Compulsory Attendance	: Yes

Course Learning Outcomes

	Learning outcome	Teaching	Assessment method(s)
		Methods/Techniques	
	Students will be able to		
1	Understands electromagnetic boundary value	Lecture, Lecture with	Midterm and Final
	problems and the content of Maxwell's	Discussion	Exams, Homeworks
	equations.		
2	Understands how wave equations arise in	Lecture, Lecture with	Midterm and Final
	electromagnetic theory.	Discussion	Exams, Homeworks
3	Understands the content of wave solutions of	Lecture, Lecture with	Midterm and Final
	Maxwell's equations in the contexts of	Discussion	Exams, Homeworks
	physical optics, transmission lines,		
	waveguides and antennas		

Weekly Detailed Course Content

Week	Content	Recommended Resource(s)	Time (Hours)
1	Introduction	Textbook/ Lecture Notes	3
2	Maxwell's equations, electromagnetic boundary conditions, boundary value problems	Textbook/ Lecture Notes	3
3	Potential functions, wave equations, time harmonic fields, electromagnetic spectrum	Textbook/ Lecture Notes	3
4	Plane waves in lossless and lossy media	Textbook/ Lecture Notes	3

COURSE INFORMATION

5	Energy and power of electromagnetic waves	Textbook/ Lecture Notes	3
6	Reflection and refraction of plane waves at plane	Textbook/ Lecture Notes	3
U	boundaries		
7	Waves in transmission lines	Textbook/ Lecture Notes	3
8	Midterm		3
9	Waves in uniform guiding structures	Textbook/ Lecture Notes	3
10	Rectangular waveguides, cavity resonators	Textbook/ Lecture Notes	3
11	Dipoles, antenna patterns, directivity	Textbook/ Lecture Notes	3
	Thin linear antennas and fundamental concepts,	Textbook/ Lecture Notes	3
12	antenna arrays, Friis transmission formula, radar		
	equation		
13	Special topics	Textbook/ Lecture Notes	3
14	Special topics	Textbook/ Lecture Notes	3
15	Final exam		3
16			

Sources

Course notes/textbooks	: Field and wave electromagnetics, D. Cheng, Addison Wesley Classical electrodynamics, J. D. Jackson, Wiley Antenna theory: Analysis and design, C. Balanis, Wiley
Readings	:
Supplemental readings	:
References	:

Evaluation System

Work Placement Number		Percentage of Grade
Attendance		
Quizzes		
Homework	2	30
Presentation		
Laboratory/Practice		
Report(s)		
Graduate Thesis/Project		
Seminar		
Projects		
Midterm exam(s)	1	30
Others		
Final exam	1	40
	Total	100
	Percentage of semester work	60
	40	
	Total	100

COURSE INFORMATION

Workload Calculation

Activity	Number	Time (hours)	Total work load (hours)
Course hours	14	3	42
Individual study for course	14	8	112
Midterm exam(s)	1	3	3
Final exam	1	3	3
Individual study for homeworks	2	5	10
Individual study for final exam	1	20	20
		Total	190
	6		

Contribution of Learning Outcomes to Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
LO1											
LO2											
LO3											

Contribution Level : 1 Very low, 2 Low, 3 Medium, 4 High, 5 Very High